If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6u^2+8u+1=0
a = 6; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·6·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*6}=\frac{-8-2\sqrt{10}}{12} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*6}=\frac{-8+2\sqrt{10}}{12} $
| (x-3)(x+4)=x^2+4 | | k−7=-6k | | 8.88=4.44(x−7) | | 4/4x=4/2x-9*4 | | 8Xn=176 | | 3.5d+9.75=4+4.25d | | -1/8x+-1/2=1/4 | | x+.05x=175000 | | 8y^2-7y-6=0 | | -1/8x—1/2=1/4 | | 5(x-11)=16× | | 3a+6=9a+12 | | 2.3x(12+)=3x20 | | 4=|-2q| | | 33+5x=2(-x+4)-10 | | 8−3j+10=j−10 | | -8z=2z+10 | | 5(3g+6)=5(4g+2) | | 3(3x+5)=2(3x-6) | | 1+5b=-8+6b | | 90=6(n+5) | | 4(3e+3)=2(5e+8) | | -42=6(x* | | I=101x-201440 | | 7k-32=59 | | 8k=-6+9k | | 4(4q+3)=5(2q+6) | | y/7+5=-15 | | 9(v+3)=90 | | 7^x+7^(x-1)+7^(x-2)+7^(x-3)=400 | | 2v=7+3v | | 4x-1+8x+4=39 |